SCI University of Iowa readies for Cassini finale; Probe to start going through Saturn's Rings

Housecarl

On TB every waking moment
For links see article source.....
Posted for fair use.....
https://now.uiowa.edu/2016/11/ui-readies-cassini-finale

UI readies for Cassini finale

Radio and plasma instrument designed and built at UI may provide clues about Saturn’s auroras, thunderstorm

BY: RICHARD C. LEWIS | 2016.11.28 | 01:58 PM

At the end of this month, NASA’s Cassini spacecraft enters the twilight of its 20-year voyage to Saturn. While the orbiter has uncovered secrets about the ringed planet, University of Iowa scientists involved in the mission expect more surprises—including some that may come from an instrument designed and built at the UI.

On Nov. 30, Cassini will begin a new series of orbits during which the spacecraft will brush one of the planet’s faint, outermost rings. In the spring of 2017, Cassini’s orbit will change again so scientists can study an inner set of dazzling rings before the mission ends emphatically in September when the spacecraft will plunge into and burn up in the planet’s atmosphere.

UI scientists are excited about the final phases of the mission, buoyed by data they hope will be gathered by their instrument, called Radio and Plasma Wave Science.

During the first series of orbits, lasting from fall through spring, the RPWS will seek to clarify the “auroral hiss” that occurs in the void between Saturn and one of its moons, Enceladus. Scientists theorize that the hiss is generated by an electromagnetic connection, roughly akin to a current running along a wire.

The orbits will take Cassini just outside Saturn’s F-ring, first discovered by Pioneer 11 in 1979 and later photographed in more detail by Voyager 2—both spacecraft that carried UI instruments. The F-ring is intriguing to space scientists because it is comprised of as many as five individual strands braided together. On either side of the F-ring, two small satellites keep the wispy dust particles confined to their orbit by gravitational forces, like shepherds minding their sheep.

“It’s an interesting celestial mechanics problem,” says Bill Kurth, a UI research scientist and lead investigator on the RPWS instrument.

The UI instrument will measure dust in the ring’s vicinity to calculate the size and density of the material that makes up the F-ring.

“It’s certainly information that the ring scientists on the mission are very interested in,” Kurth adds.

In the spring, Cassini will begin a set of proximal orbits, which NASA has dubbed “the Grand Finale,” that will usher the spacecraft on a path that takes it inside the planet’s innermost ring and just a couple thousand miles above its clouds. While the rings may grab the headlines, the thunderstorms in Saturn’s northern latitudes merit a close, second billing: The most recent one, observed by Cassini in December 2010, lasted nine months, and its lightning strikes produced radio waves similar to the cracks and pops one hears on an AM station during a thunderstorm here on Earth.

UI’s instrument detected the radio waves from the lightning bursts, which peaked at 10 flashes per second. While Saturn’s storms are highly infrequent, scientists hope to witness another while buzzing the planet’s northern regions where past storms have occurred.

“If it happens, we’ll be in a great position to observe them,” Kurth says.

Birth of an instrument
UI physics and astronomy professor Don Gurnett has been involved with Cassini since it was a mere idea. On Feb. 14, 1989, Gurnett convened a meeting with mostly European physicists at a hotel in Noordwijk, Holland, to discuss outfitting the spacecraft with a radio and plasma wave instrument. His notes from that gathering, neatly penned in a green-bound notebook labeled “Cassini” on the cover, include this excerpt: “Purpose: To establish a plan for proceeding with Cassini proposal.”

Gurnett’s proposal beat out hundreds of applicants. More than seven years later, Cassini took flight with the UI instrument on board. Along with Gurnett and Kurth, UI research scientists George Hospodarsky, J. Douglas Menietti, and Ann Persoon have been involved with the mission.

Gurnett, who last fall celebrated 50 years of space research and teaching at the UI, says he’s proud of the mission’s accomplishments so far. He’s personally gratified by knowledge that’s come from the instrument he conceived, with 402 scientific papers and more than a dozen doctoral theses based on RPWS data.

“Scientific knowledge. That’s what we’re all about,” Gurnett says. “The wonderment of the universe, and how it may affect us in ways we don’t yet know.”
 

Housecarl

On TB every waking moment
For links see article source.....
Posted for fair use.....
http://www.foxnews.com/science/2016...y-be-far-younger-than-originally-thought.html

Surprise! Saturn's rings may be far younger than originally thought

By Walt Bonner Published November 28, 2016 FoxNews.com

While the dinosaurs roamed the Earth, Saturn’s rings may have been forming in space. So says a new study based on a large amount of almost–forgotten data from NASA’s Cassini mission, which has been observing the planet since 2004.

Saturn’s rings are made up of primarily ice particles that measure anywhere from a few inches up to several yards in size. The rings are believed to have been pure ice water when they were formed (even today they’re mostly ice), but over time they were continuously hit with micrometeoroids: pieces of ice and rock thought to be leftover material from the formation of the solar system. A good bit of this rocky “pollution” has collected on the ice over the years, and the proportion of accumulated meteoroids can be used to narrow down something that has long eluded scientists—the age of Saturn’s rings.

PLUTO COULD HARBOR A SUBTERRANEAN ICY OCEAN

“Due to Saturn’s rings’ huge surface area, they are especially susceptible to bombardment from these micrometeoroids,” study author Zhimeng Zhang, a graduate student at Cornell University, told Foxnews.com. “So, if we know the flux of these micrometeoroids (which was also measured by Cassini), how much is actually hitting the rings, and if we know how much non-icy material there is in the rings, then we can use it to put tight constraints on ring age.”

Finding out the level of “pollution” on the ring ice particles was no easy task. First, Zhang had to analyze decade-old data collected by instruments built to study the surface of Titan, one of Saturn moons. In addition to the sheer quantity of information, Zhang believes the data was also left unanalyzed for years due to its complexity.

STRANGE FEATURE ON MARS IS A GOOD PLACE TO LOOK FOR LIFE, STUDY SAYS

“I think the main reason that led to the data sitting around untouched for a while is that the calibration process, which involves a crucial de-convolution process, is very complicated,” she said. “I have spent almost three years working on this data.”

Of particular interest to Zhang was data collected by the Cassini Titan Radar Mapper. Since the ice is opaque to many wavelengths of light, the particles are able to conceal the amount of rock clinging to them. This is where the Radar Mapper comes in handy. Operating at a wavelength in the microwave end of the electromagnetic spectrum that makes it possible to pierce the ice, the Mapper examines the entire ring composition, and not just the surface.

Zhang’s focus was on Saturn’s C ring. Because of its relative low mass, this ring had collected the most micrometeoroid pollution, making it an ideal candidate for study.

MOON HAD A DRAMATIC, EXPLOSIVE HISTORY, STUDY SAYS

After analyzing this data, Zhang was able to build physical models and simulate how light scatters off of and between particles in the rings. The results showed that most regions in the C ring contain about 1-2% silicates.

“These results are consistent with an initially nearly pure-ice ring system that has been continuously contaminated by in-falling micrometeoroids over as much as 100 million years, using the accepted values we know for the micrometeoroid flux,” she said.

More surprisingly, Zhang and her team also found an enhanced abundance of non-icy material concentrated in the middle C ring, indicating that Centaurs—rocky objects that orbit between Jupiter and Neptune and can sometimes measure up to 160 miles or more in diameter— have had at least one encounter with the rings.

“We proposed that in addition to the C ring being continuously polluted by micrometeoroid bombardment over their history, the middle C ring was further contaminated by an incoming Centaur which was torn apart by Saturn’s tides and deposited in the rings,” Zhang explained. “The Centaur was likely captured and integrated into the rings perhaps as recently as little as 10-20 million years ago.”

15 MONTHS LATER, NASA'S PLUTO PROBE SENDS BACK LAST BIT OF DATA

Her end results indicate that Saturn’s C ring is somewhere between a mere 15 and 100 million years old— a big difference between the 3.8 billion-year age range previously believed. This would mean that the rings were forming around the tail end of the dinosaurs’ 175 million–year run here on Earth.

Zhang and her team plan on studying the rings more, and are looking forward to the next wave of Cassini mission data in the hope of conclusively proving their findings. The mission ends in 2017, when the Cassini spacecraft flies into Saturn.

“Next year, during the grand finale of Cassini mission in 2017, we will obtain more passive and active radar observations on the rings at unprecedented resolution and at a variety of different geometries,” she said. “We are really excited about these observations, because they will give us very valuable and further insights on the rings’ properties, dynamics and origins, but—especially for me— to further prove what we have proposed in our paper to be correct.”

The study can be found in the January 2017 edition of the science journal Icarus.
 
Top