EBOLA Horrifying Ebola SCIENCE ~ now ~

Cascadians

Leska Emerald Adams
DOOM ... read this and weep ... could somebody copy and paste the pix and charts?

http://www.operonlabs.com/?q=node/20

Ebola 2014 is Mutating as Fast as Seasonal Flu

Submitted by admin on Thu, 10/16/2014 - 21:54
Ebola 2014 is Mutating as Fast as Seasonal Flu
// alex .at. operonlabs.com //

Background:

The current Ebola 2014 virus is mutating at a similar rate to seasonal flu (Influenza A). This means the current Ebola outbreak has a very high intrinsic rate of viral mutation. The bottom line is that the Ebola virus is changing rapidly, and in the intermediate to long term (3 months to 24 months), Ebola has the potential to evolve.

We cannot predict exactly what the Ebola virus will look like in 24 months. There is an inherent stochastic randomness to viral evolution which makes predictions on future viral strains difficult, if not impossible. One basic tenet we can rely on is this: Viruses tend to maximize their infectivity (basic reproduction number) within their biological constraints (Nowak, 2006).

These evolutionary constraints can be extremely complex, and can include trade-offs between virulence and infectivity, conditions of superinfection, host population dynamics, and even outbreak control measures.

One of the few statements we can make with confidence that the Ebola genome is changing at a specific rate, which is explained below.

Ebola Mutation Rate:

Analysis of the available research suggests that the Ebola 2014 virus is currently mutating at a rate 200% to 300% higher than historically observed (Gire, 2014).

ebola_ot_mutation_mod1b.png


Ebola Genome Substitution Rates (Gire, 2014)


Furthermore, the Ebola-2014 virus's mutation rate of 2.0 x 10−³ subs/site/year is nearly identical to Influenza A's mutation rate of 1.8 x 10−³ subs/site/year (Jenkins, 2002).
This means Ebola 2014 is mutating as fast as seasonal flu.

zh_graph_1c.png


Disclaimer: This paper contains no evidence (for or against) alternate modes of transmission for Ebola, nor is this paper postulating that genetic changes have impacted EVD clinical presentation (although evidence for this has started to emerge). This paper is simply demonstrating what appears to be a rapid rate of evolution in the Ebola 2014 Virus. Many recent Ebola viral mutations have been synonymous mutations, some have been in intergenic regions, while others are non-synonymous substitutions in protein-coding regions. All have unknown impact at the present time. Such questions should be the subject of future scientific research. This article simply points out that Ebola in 2014 is undergoing rapid mutation and adaptation. The future implications of Ebola's rapid evolution are unclear.

We chose to compare Ebola-2014 to Influenza A (Seasonal Flu) because Influenza is one of the fastest-mutating viruses (Jenkins, 2002). Unlike chickenpox (VZV), which people usually only contract once per lifetime, Influenza can infect a single individual many times repeatedly over the years. One of the reasons Influenza is able to re-infect humans each year is because the Influenza's high mutation rate allows the virus to generate 'escape mutants'. Escape mutants are Influenza viruses which are no longer recognized by human immune systems. Each winter presents us with a new mutated strain of the Influenza virus. Rapid mutation is beneficial to Influenza genetic fitness (in regards to antigenic regions), because it allows a 'new' Influenza virus to circulate year after year.

The benefit of a high mutation rate in Ebola 2014 is different -- the genetic changes in Ebola-2014 allow for rapid exploration of the entire fitness landscape in a brand new host -- humans. We need to be aware that the Ebola-2014 virus is undergoing rapid adaptation.

pol26%20(1).gif


Ebola in Zoonotic Reservoir: Viral Genome adapted to Fruit Bats. (Green)
Ebola in Human Hosts: Viral Genome adapted to Humans. (Red)
Ebola Genotype will move Green -> Red during serial passage through Humans.

Until the Ebola outbreak is brought under control, the Ebola-2014 virus will continue to seed and adapt in its growing pool of West African human hosts. We need to consider that as the weeks and months go on, the rapidly-changing Ebola-2014 virus will undergo repeated export from the West African region to countries around the world.

As new Ebola cases grow in West Africa and elsewhere, we are effectively conducting 'serial passage' experiments of Ebola-2014 through human hosts. The repeated passage of Ebola-2014 through humans is exerting selection pressure on the Ebola-2014 virus to adapt to our species (instead of fruit bats). The introduction of Ebola-2014 into a large pool of West African human hosts (coupled with the complex dynamics of evolutionary selection pressure) may allow the Ebola-2014 virus to become more transmissible as the months go on, particularly in the absence of effective control interventions.

The high mutation rate we see in Ebola-2014 reflects its ability to rapidly explore the fitness landscape. The ability of Ebola to undergo rapid genome substitutions and SNPs, coupled with genetic recombination, will allow 'survival of the fittest' in Ebola-2014 genetic variants (on both the intra-host and inter-host levels). New Ebola sub-clades are created with each passing month (there are already four sub-clades as of August 2014). New Ebola genetic variants are created with each new infection, though most are selected against. Rapid adaptation emerges from the high intrinsic Ebola-2014 mutation rate, coupled with the virus's ability to undergo RNA recombination during superinfection.

zh_genetic1b.png


Molecular dating of the Ebola-2014 outbreak (Gire, 2014).
Probability distributions for both 2014 divergence events are overlaid above.

This phylogenetic tree is based on 99 Ebola viral genomes deep-sequenced from 78 distinct patients in Sierra Leone (Gire, 2014). We can see in the figure above that there are at least four Ebola genetic clusters (or sub-clades) based on phylogenetic analysis: These Ebola clusters are called GN, SL1, SL2, and SL3 by Gire et al. The key takeaway is that even prior to July 2014, the current Ebola outbreak had already accumulated significant genetic diversity. Furthermore, the dominant circulating Ebola variants have changed over time. Up to four different Ebola-2014 viral sub-clades (groups of genetically related Ebola isolates) have circulated between humans since the onset of the 2014 Ebola outbreak.

As the number of people affected by the 2014 Ebola outbreak has grown, so has the number of Ebola unique viral mutations and unique viral genetic lineages. We can expect Ebola 2014 viral lineages to grow as some function f(i) proportional to the number of people infected with Ebola.

ebola_ot_mutation_mod2b.png


Ebola-2014: Acquisition of genetic variation over time (Gire, 2014).
Fifty mutational events (short dashes) and 29 new viral
lineages (long dashes) were observed.



The diagram above suggests that as the Ebola-infected host pool grows, so does the number of unique Ebola viral lineages (Gire, 2014). This implies that Ebola acquires genetic diversity as it infects more people, particularly if the virus undergoes recombination during superinfection (Niman, 2007). The growing number of new Ebola viral lineages will undergo natural selection for some 'optimum' balance of virulence, infectivity, tissue tropism, immune suppression, and other parameters which maximize the reproductive fitness of the Ebola virus in humans. What that final virus might eventually look like 2 years from now is anyone's guess. But the explosion of genetic variation suggests that the Ebola virus will become more difficult to contain as time goes on, which is why early action is important.

The idea that the Ebola-2014 Virus jumped species, but is now somehow 'static' or 'frozen in time' is a mistake. The Ebola-2014 virus is undergoing a period of rapid adaptation in human hosts, as evidenced by the Ebola RNA sequences deposited in Genbank, and the studies referenced with this article. Hopefully, interventions (like contact tracing) will be able to stop Ebola-2014 before the virus optimizes its genotype.

[ graph here ]

These are two scenarios to outline what may happen in the future. The critical variable determining the global outcome of Ebola is the response in West Africa, not the response in the United States.

Best Case Scenario:

WHO immediately deploys contact-tracing teams on the ground in West Africa. The US Military is deployed as well, and constructs hospitals sufficient to care for the sick. The hospitals are staffed by qualified (read: well trained) caregivers. Teams on the ground track down and care for Ebola-infected patients across West Africa, distributing self-treatment kits, food, medicine, and expertise. An effort is made to involve local authorities and community leaders. These efforts cause measurable reductions in the basic reproduction number of the virus by the end of 2014.

Within 3 months to 9 months, the outbreak in West Africa peaks, levels-off, and begins to fade. The Ebola virus never has the opportunity to acquire any significant mutations, due to its limited host pool. Ebola is fully under control by early 2015. Sporadic cases in other countries are dealt with by treatment and contact tracing. By Q4 2015, multiple Ebola vaccines and drugs are in the pipeline limiting the overall threat Ebola poses.

Worst Case Scenario:

The international response is perpetually behind the curve. Every response action is 8 to 12 weeks too late. Statistics from the WHO become volatile and are unreliable as the lack of deployed personnel make hard numbers impossible to pin down. By 2015 the number of infections is in the hundreds of thousands in West Africa. The West African region exports 'asymptomatic infectives' which go undetected by basic screening. These individuals 'seed' outbreaks in other countries.

As more people become infected, a significant mutation arises that allows for a longer asymptomatic but infectious period, increasing the R-0. Globally, cases continue to double every 16 days, contact tracing infrastructure outside the West becomes saturated, and hospitals are overrun. By early-to-mid 2015, the global pool of Ebola-infected patients are in the millions, mainly centered in West Africa and Southeast Asia with multiple strains of varying virulence. A sudden change in the outbreak epidemiology caused by a recombinant Ebola strain causes confusion about how to respond. Efforts at developing treatments/vaccines become logistically complex and ineffective.

The implication of the Ebola 2014 mutation rate is this: A single Ebola mutation doesn't necessarily mean the virus will become 'airborne', or that the virus has altered tissue tropism, or that the virus spreads more easily. But a high intrinsic rate of Ebola mutation means that such changes may become possible in the future. If the number of people infected grows into the hundreds of thousands, or even low millions, then the probability of a significant 'constellation' of accumulated Ebola mutations with phenotypic impact becomes more likely. The problem is that accumulated Ebola mutations will scale with the size of the population infected. Conversely, in a small population, such Ebola mutations are not likely to have a significant impact. It's a bit like the virus is buying lottery tickets... The more lottery tickets the Ebola virus 'buys', the more chances it has to 'win'.

Next Steps:

The general consensus in the scientific and epidemiological community is immediate intervention in West Africa is necessary in order to avoid taking the risky outcomes possible in a 'worst case' scenario. A suitable response would need to include airlifting self-treatment kits with thermometers, the distribution of life-saving drugs, the construction of Ebola treatment centers, hospital staffing, contact tracing teams, and so forth. A robust international response must happen soon in order to ensure that the current situation with the Ebola outbreak remains a 'best case' outcome.



References:


[1] Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. (Gire et al, 2014).
http://www.ncbi.nlm.nih.gov/pubmed/25214632

[2] Rates of Molecular Evolution in RNA Viruses: A Quantitative Phylogenetic Analysis. (Jenkins et al, 2002).
http://www.ncbi.nlm.nih.gov/pubmed/11821909

[3] Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. (Wittman et al, 2007).
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040453/#!po=17.8571

[4] Ebola Recombination: Recombinomics Commentary. (Niman, 2007).
http://www.recombinomics.com/News/11150702/Ebola_Recombination.html

[5] Evolutionary Dynamics: Exploring the Equations of Life. (Nowak, 2006).
http://www.amazon.com/Evolutionary-Dynamics-Exploring-Equations-Life/dp/0674023382
 
Last edited:

Satanta

Stone Cold Crazy
_______________
Long-winded way to say we might be frelled.

The again it might evolve into something less harmful. That does happen you know.
 

Gingergirl

Veteran Member
My guess is that it will only be by shear Providence that we develop and administer a vaccine globally before the virus "learns" (mutates) resistant to the vaccine.

And yes Satanta, it could mutate to something no more harmless than a common cold.
 

Cascadians

Leska Emerald Adams
Now getting more lethal

http://www.dailymail.co.uk/news/art...t-warns-deadly-virus-changing-contagious.html

Dr Jahrling says: 'We are using tests now that weren't using in the past, but there seems to be a belief that the virus load is higher in these patients [today] than what we have seen before. If true, that's a very different bug.
'I have a field team in Monrovia. They are running [tests]. They are telling me that viral loads are coming up very quickly and really high, higher than they are used to seeing.
'It may be that the virus burns hotter and quicker.'
 
Last edited:

Fetz

Senior Member
Kind of what the virologists on the flu boards have been afraid of. Each passage through a human changes the virus. Look at Influenza A and Influenza B on the chart. Similar "mutation" rates.
 

Cohickman

Veteran Member
Well that gave me a warm fuzzy feeling all over. I am leaning towards the worst case 5 based on the inability to isolate early on. Not ready to Bug In yet but it's on my mind.
 

bw

Fringe Ranger
Long-winded way to say we might be frelled.

Could just put up a sign: "This Way to Camp Fooked ---->"

The again it might evolve into something less harmful. That does happen you know.

A virus doesn't care whether it harms, and it's not selected for that. It evolves to be communicated.
 

niceguy

Veteran Member
zh_graph_1c.png


Ebola is bracketed in this figure by HIV and Influenza A. A common characteristic of these: NO single permanent vaccine is possible due to high mutation rate. With Influenza A, we must try to view new types and add them in each year.
 

Avatar

Human test subject #58652
Lots of good info there no doubt.
I just wish I could find out a little more info on operonlabs?
I always like to know who is presenting information to me.
All I can find is that the website was created just about a month ago.
 

kittyknits

Veteran Member
We'll be required to get an annual ebola vaccine, but they won't be able to assure us that they chose the right mutation. Ebola roulette.
 

LilRose8

Veteran Member
http://www.dailymail.co.uk/news/art...t-warns-deadly-virus-changing-contagious.html

Dr Jahrling says: 'We are using tests now that weren't using in the past, but there seems to be a belief that the virus load is higher in these patients [today] than what we have seen before. If true, that's a very different bug.
'I have a field team in Monrovia. They are running [tests]. They are telling me that viral loads are coming up very quickly and really high, higher than they are used to seeing.
'It may be that the virus burns hotter and quicker.'

If it IS mutating this fast, then no vaccine on the planet will be able to keep up.
 

Cascadians

Leska Emerald Adams
If you look at the sheer science of this Ebola virus, it is gearing up for an Extinction Level Event.

With increasing lethality, viral load and rapid mutation it is beyond INSANE to let it in the country.

The only SANE action to save our lives is to STOP it now from coming here.
 

Housecarl

On TB every waking moment
Merde.

Was talking to a coworker about this last weekend. When he "got" what I was getting at, his eyes bugged out.
 

Garryowen

Deceased
Consider this information in the light of the new czar's concern for world population reduction. Maybe he was more connected to this mess than would appear.
 
"...it could mutate to something no more harmless than a common cold..." (post #3)


Yup, and let's hope that's the case...

However, that's probably not the smartest way to 'bet' on this virus.


It's simply incredulous to consider what the so-called 'leadership' of the US has done by allowing
and facilitating this virus to enter the US - probably criminal, in fact.
 

Cascadians

Leska Emerald Adams
History, if there is anybody left to read it, will label this the most egregious TREASON, CRIMINALITY AND STUPIDITY AGAINST MANKIND EVER.
 

Cascadians

Leska Emerald Adams
What seals the Doom is the recent display of complete ineptitude of the 1st USA case.
USA obviously ripe for major disruption and the jihaters will not hesitate to go to Africa and roll around in Ebola corpse blood and go take a shower then hop on planes to USA.
They will roam around sick touching things, puking spiting and crapping on purpose and then blow themselves up when they get too sick to roam around, so their particles and blood aerosol fly off in all directions.

Doom.
 

4RIVERS

Veteran Member
Watched a speech by Michael Osterholm, Director of the University of Minnesota Center for Infectious Disease Research and Policy, earlier today, and basically he thinks a vaccine is the only thing that will keep Ebola under control. If it is mutating this fast though I don't think it'll ever be wiped out.
 

Mr. Peabody

Veteran Member
If Nigeria can keep the infected out, so can the US. That is unless the US doesn't want to keep them out. What great importance could those 150 travelers a day from the infected countries possess that would possibly inhibit a travel ban? A czar that is a political hack, who spun the lie in 2005 to congress that Fanny Mae was solvent, and tied up a presidential election with hanging chads, and likes to discuss over population problems...Nahhhh, I am going back to watching my Dancing With the Stars and season 3 American Idol recordings. Honey Boo Boo anyone?
 

rummer

Veteran Member
Ebola death rate rises to 70 percent, says world health body

By Elise Viebeck - 10/14/14 09:22 AM EDT


Global health officials said Tuesday that the death rate in the Ebola epidemic has risen to 70 percent, up from 50 percent.

The World Health Organization (WHO) made the announcement at a news conference in Geneva, where officials said there could be up to 10,000 new cases of the virus every week within two months.



A total of 4,447 people have died from Ebola this year, the WHO said, while 8,914 have been sickened. Experts believe the real number of Ebola victims is much bigger than the official figures due to difficulties in reporting the cases.
WHO Assistant Director-General Dr. Bruce Aylward underscored the need for a more robust international response to Ebola with a timetable.

If the effort to fight Ebola is not intensified within 60 days, he said, deaths will mount and the virus will become even harder to control.

The news comes as U.S. health officials try to understand how a nurse caring for an Ebola patient in Dallas contracted the virus herself.

The case, confirmed over the weekend, is the first ever transmission of Ebola in the United States and raises questions about hospitals' preparedness to cope with infectious diseases.

The Centers for Disease Control and Prevention (CDC) said Monday it would “rethink” its strategy on Ebola, but warned reporters that it has little authority to enforce best practices at hospitals.

A “relatively large” number of healthcare workers at Texas Health Presbyterian Hospital in Dallas were put at risk during care of the original Ebola patient, who died a week ago.

Hospital records uncovered by The Associated Press pegged the number at roughly 70 medical personnel.

It is still unclear exactly how the nurse who became ill, identified by family as 26-year-old Nina Pham, contracted Ebola while wearing protective gear.

The case is dominating national news coverage as the White House calls on health officials to take “immediate additional steps” to ensure preparedness for Ebola.

President Obama met with Health and Human Services Secretary Sylvia Burwell and other leaders Monday to discuss the effort.

It has been one month since Obama announced a stepped up response to Ebola in West Africa, including sending troops to strengthen Liberia's medical infrastructure.

The Pentagon will deploy 4,000 service members for a mission it said could last “about a year.” The troops will construct 17 treatment centers by the end of November and assist in streamlining the logistics of the international medical response.

A select group will also work in mobile labs to diagnose Ebola cases using fluid samples, defense officials said last week.

https://thehill.com/policy/healthcare/220644-ebola-death-rate-rises-to-70-percent
 

Signwatcher

Has No Life - Lives on TB
Had to laugh...DS and I watched Andromeda Strain last night and some of the graphs on this thread look similar to some in the movie. Pray this ebola crap will turn harmless like in the movie.
 

bw

Fringe Ranger
Had to laugh...DS and I watched Andromeda Strain last night and some of the graphs on this thread look similar to some in the movie. Pray this ebola crap will turn harmless like in the movie.

Andromeda Strain was a pathetic piece of magical pseudo-science. Ebola isn't magical, it's real. Live with it ... or not.
 

Countrymouse

Country exile in the city
If Nigeria can keep the infected out, so can the US. That is unless the US doesn't want to keep them out. What great importance could those 150 travelers a day from the infected countries possess that would possibly inhibit a travel ban? A czar that is a political hack, who spun the lie in 2005 to congress that Fanny Mae was solvent, and tied up a presidential election with hanging chads, and likes to discuss over population problems...Nahhhh, I am going back to watching my Dancing With the Stars and season 3 American Idol recordings. Honey Boo Boo anyone?

I did not know this about our new "Czar." Thank you for the details...
 

BV141

Has No Life - Lives on TB
http://en.wikipedia.org/wiki/DNA_replication
DNA polymerases are highly accurate, with an intrinsic error rate of less than one mistake for every 10,000,000 nucleotides added.[7] In addition, some DNA polymerases also have proofreading ability; they can remove nucleotides from the end of a growing strand in order to correct mismatched bases.

Ebola is an RNA based virus and DOES NOT have proofreading capability. Highly error prone (ie, mutation prone.).

http://www.virology.ws/2009/05/10/the-error-prone-ways-of-rna-synthesis/

look at a very important property of this step in viral replication. All nucleic acid polymerases insert incorrect nucleotides during chain elongation. This misincorporation is one of the major sources of diversity that allows viral evolution to take place at an unprecedented scale. Put another way, viruses are so successful because they make a lot of mistakes.
 

Kris Gandillon

The Other Curmudgeon
_______________
Lots of good info there no doubt.
I just wish I could find out a little more info on operonlabs?
I always like to know who is presenting information to me.
All I can find is that the website was created just about a month ago.

Exactly. And Alex.at.operonlabs.com? Cutesy way to not get his email address alex@opteronlabs.com skimmed by a 'bot. And a 1 page web site with no company info, no Contact Us. Yea, highly suspect. Though SOME of the same info is available elsewhere.
 

Flippper

Time Traveler
Not quite--TPTB have apparently determined that 500 million serfs will be sufficient to support them... that's not wiping out the species.
Actually, I hate to burst your bubble, but from what I understand, the 500 million are their relatives of the 'marovingian' bloodline. You know, like all the US presidents are related, and actors are related to them, but nobody who's "us" is part of that group. Meh, I wouldn't want to rub shoulders with that inbred bunch anyway.

I did not know this about our new "Czar." Thank you for the details...
Ditto that, I had no idea.

Consider this information in the light of the new czar's concern for world population reduction. Maybe he was more connected to this mess than would appear.
Now that's something I never considered, though I've not kept a really close eye on all this Ebola stuff like I normally would. Hmmmm. Seems only those who are part of the dc scum and elite are behind the depopulation scam, they are the State of the World Forum freaks where in 1995 they applauded Sam Keene when he announced that 90% of the earth's population needed to die to what they thought was a 'closed room'. Word got out, oopsie.
 

Cascadians

Leska Emerald Adams
Africa is already lost to Ebola

[ Fair Use: For Educational / Research / Discussion Purposes Only ]
http://www.newyorker.com/magazine/2014/10/27/ebola-wars
OCTOBER 27, 2014 ISSUE, by Richard Preston

The Ebola Wars
How genomics research can help contain the outbreak.


The most dangerous outbreak of an emerging infectious disease since the appearance of H.I.V., in the early nineteen-eighties, seems to have begun on December 6, 2013, in the village of Meliandou, in Guinea, in West Africa, with the death of a two-year-old boy who was suffering from diarrhea and a fever. We now know that he was infected with Ebola virus. The virus is a parasite that lives, normally, in some as yet unidentified creature in the ecosystems of equatorial Africa. This creature is the natural host of Ebola; it could be a type of fruit bat, or some small animal that lives on the body of a bat—possibly a bloodsucking insect, a tick, or a mite.

Before now, Ebola had caused a number of small, vicious outbreaks in central and eastern Africa. Doctors and other health workers were able to control the outbreaks quickly, and a belief developed in the medical and scientific communities that Ebola was not much of a threat. The virus is spread only through direct contact with blood and bodily fluids, and it didn’t seem to be mutating in any significant way.


After Ebola infected the boy, it went from him to his mother, who died, to his three-year-old sister, who died, and to their grandmother, who died, and then it left the village and began moving through the human population of Guinea, Liberia, and Sierra Leone. Since there is no vaccine against or cure for the disease caused by Ebola virus, the only way to stop it is to break the chains of infection. Health workers must identify people who are infected and isolate them, then monitor everybody with whom those people have come in contact, to make sure the virus doesn’t jump to somebody else and start a new chain. Doctors and other health workers in West Africa have lost track of the chains. Too many people are sick, and more than two hundred medical workers have died. Health authorities in Europe and the United States seem equipped to prevent Ebola from starting uncontrolled chains of infection in those regions, but they worry about what could happen if Ebola got into a city like Lagos, in Nigeria, or Kolkata, in India. The number of people who are currently sick with Ebola is unknown, but almost nine thousand cases, including forty-five hundred deaths, have been reported so far, with the number of cases doubling about every three weeks. The virus seems to have gone far beyond the threshold of outbreak and ignited an epidemic.

The virus is extremely infectious. Experiments suggest that if one particle of Ebola enters a person’s bloodstream it can cause a fatal infection. This may explain why many of the medical workers who came down with Ebola couldn’t remember making any mistakes that might have exposed them. One common route of entry is thought to be the wet membrane on the inner surface of the eyelid, which a person might touch with a contaminated fingertip. The virus is believed to be transmitted, in particular, through contact with sweat and blood, which contain high concentrations of Ebola particles. People with Ebola sweat profusely, and in some instances they have internal hemorrhages, along with effusions of vomit and diarrhea containing blood.

Despite its ferocity in humans, Ebola is a life-form of mysterious simplicity. A particle of Ebola is made of only six structural proteins, locked together to become an object that resembles a strand of cooked spaghetti. An Ebola particle is only around eighty nanometres wide and a thousand nanometres long. If it were the size of a piece of spaghetti, then a human hair would be about twelve feet in diameter and would resemble the trunk of a giant redwood tree.

Once an Ebola particle enters the bloodstream, it drifts until it sticks to a cell. The particle is pulled inside the cell, where it takes control of the cell’s machinery and causes the cell to start making copies of it. Most viruses use the cells of specific tissues to copy themselves. For example, many cold viruses replicate in the sinuses and the throat. Ebola attacks many of the tissues of the body at once, except for the skeletal muscles and the bones. It has a special affinity for the cells lining the blood vessels, particularly in the liver. After about eighteen hours, the infected cell is releasing thousands of new Ebola particles, which sprout from the cell in threads, until the cell has the appearance of a ball of tangled yarn. The particles detach and are carried through the bloodstream, and begin attaching themselves to more cells, everywhere in the body. The infected cells begin spewing out vast numbers of Ebola particles, which infect more cells, until the virus reaches a crescendo of amplification. The infected cells die, which leads to the destruction of tissues throughout the body. This may account for the extreme pain that Ebola victims experience. Multiple organs fail, and the patient goes into a sudden, steep decline that ends in death. In a fatal case, a droplet of blood the size of the “o” in this text could easily contain a hundred million particles of Ebola virus.


Inside each Ebola particle is a tube made of coiled proteins, which runs the length of the particle, like an inner sleeve. Viewed with an electron microscope, the sleeve has a knurled look. Like the rest of the particle, the sleeve has been shaped by the forces of natural selection working over long stretches of time. Ebola is a filovirus, and filoviruses appear to have been around in some form for millions of years. Within the inner sleeve of an Ebola particle, invisible even to a powerful microscope, is a strand of RNA, the molecule that contains the virus’s genetic code, or genome. The code is contained in nucleotide bases, or letters, of the RNA. These letters, ordered in their proper sequence, make up the complete set of instructions that enables the virus to make copies of itself. A sample of the Ebola now raging in West Africa has, by recent count, 18,959 letters of code in its genome; this is a small genome, by the measure of living things. Viruses like Ebola, which use RNA for their genetic code, are prone to making errors in the code as they multiply; these are called mutations. Right now, the virus’s code is changing. As Ebola enters a deepening relationship with the human species, the question of how it is mutating has significance for every person on earth.

The Kenema Government Hospital, in Kenema, Sierra Leone, is a scatter of low yellow-and-red-painted cinder-block buildings with rusty metal roofs. It spreads down a hillside near the center of town, and, according to medical workers there, is normally bustling with patients and their families. The town sits in fertile, hilly country, dotted with small villages, ninety miles southwest of the place where the borders of Sierra Leone, Guinea, and Liberia converge in a triskelion. This border area was the cradle of the Ebola outbreak. For decades, the Kenema hospital has had a special twelve-bed unit called the Lassa Fever Ward and Research Program. Lassa fever is caused by Lassa virus, which is classified by virologists as a Biosafety Level 4 pathogen—lethal, infectious, typically with no vaccine and no reliable cure. In May of this year, the chief physician of the Lassa program, Sheik Humarr Khan, was watching out for Ebola, which, like Lassa, is a Level 4 pathogen. The virus had been spreading in Guinea and Liberia, but there had been no reported cases yet in Sierra Leone.

Around May 23rd, a woman who was having a miscarriage arrived at the hospital. She tested negative for Lassa, but Khan suspected that she might have Ebola. As it turned out, she had been at the funeral of a faith healer who had recently been to Guinea and had died after attempting to heal a number of people sick with Ebola. Khan ordered a blood sample to be taken from her, and he isolated her in the hospital’s Lassa ward. Khan was a specialist in viral hemorrhagic diseases and one of the world’s leading experts in Lassa fever, and people described him as voluble and intense; virus experts from a number of American research institutions had developed close friendships with him and his staff. He devoted much of his time to tending patients at the hospital, who were typically poor. Quite a few of them couldn’t afford to buy medicine, so Khan bought it for them, and he gave them food if they looked hungry. “You must eat or you cannot get better,” he told them.

When Khan was with patients in the Lassa ward, he wore a type of biohazard outfit known as personal protective equipment, or P.P.E. At Kenema, the outfit consisted of a full-body suit and head covering made of white Tyvek fabric, a breathing mask, a plastic face shield and goggles, two pairs of surgical gloves, one pair of rubber gloves, rubber boots, and a plastic apron. Patients with Lassa had seizures and hemorrhages and went into comas, and many of them died, despite excellent care. In the evening, Khan liked to watch soccer games on television with friends, and when he got tired on his rounds he would sit in a plastic chair for a moment, chatting with people as he drank a can of Sprite.

The day after the woman who had miscarried was admitted to the Lassa unit, a lab technician put on P.P.E., carried a sample of the woman’s blood into the lab, and tested it. It was positive for Ebola. Wanting to be sure, the technician e-mailed the test results to the lab of an associate professor of biology at Harvard University named Pardis Sabeti. Over the years, Sabeti had forged ties with the Lassa program, and had become friends with Khan.


Sabeti is a slender woman in her late thirties, with a warm manner. She is the head of a lab at Harvard, and leads viral-genome efforts at the Broad Institute of M.I.T. and Harvard. She specializes in reading and analyzing the genomes of organisms and, in particular, studies virus evolution—the way viruses change over time as they adapt to their environments. In her spare time, Sabeti is the lead singer and songwriter for an indie band called Thousand Days. Its fourth album has been delayed owing to her work on the Ebola outbreak.

When Sabeti learned that Ebola had reached Sierra Leone, she called a meeting in what she and her colleagues had begun to refer to as the Ebola War Room. It is a sunlit room with a large table at the Broad Institute, on the M.I.T. campus. As the outbreak gathered strength, Sabeti became the de-facto head of a team of scientists who met regularly in the War Room to plan and direct elements of the human defense against Ebola. They had sent team members with advanced diagnostic equipment to Kenema and to Nigeria, to help doctors diagnose Ebola quickly. “The faster you can get a diagnosis of Ebola, the faster you can stop it,” Sabeti said recently. “But the big question is, how is this thing going to be stopped?”

Sabeti and her team made plans to begin reading the genome of the virus as soon as possible. All the drugs, vaccines, and diagnostic tests for Ebola depend critically on the virus’s genetic code. The researchers knew that the code was changing. Could Ebola be evolving away from the defenses against it? Where had it come from? Had it started in one person or had it begun in different people at different times and places? Could Ebola become more contagious, and spread faster?

Sabeti and her team conceived a plan to obtain samples of blood from people infected with Ebola. They would read the genomes of whatever Ebola they could find in the patients’ blood. When monks copied texts by hand in the Middle Ages, they made mistakes. Since Ebola makes errors as it replicates, each genome was like a hand-copied text, and detectable differences would emerge among the genomes; there isn’t just one “strain” of the virus. Ebola is not a thing but a swarm. It is a vast population of particles, different from one another, each particle competing with the others for a chance to get inside a cell and copy itself. The swarm’s genetic code shifts in response to the changing environment. By looking at a few genomes of Ebola, the scientists hoped to grasp an image of the whole virus, which could be conceived of as a life-form visible in four dimensions, as vast amounts of code flowing through time and space. To find the genome, they needed blood.

Teams of epidemiologists and health workers spread out from Kenema and identified twelve more women who were sick with Ebola. All of them had been at the funeral of the faith healer. They were taken to the Kenema hospital and placed in the Lassa ward. Humarr Khan and top officials at the Sierra Leone Ministry of Health were anxious to have the genome of Ebola sequenced, and so Khan and Sabeti, working with the ministry officials, used a method of collecting blood that didn’t interfere with patient care: the researchers scavenged samples of blood serum from tubes left over from clinical care. This material was biohazardous medical waste, intended to be burned in the hospital’s incinerator. “We did everything we could to make no footprint in the way we took samples,” Sabeti said. Blood samples were also taken from thirty-five other people who were suspected of having been exposed to Ebola.

The result was a large number of microtubes of human blood serum collected from forty-nine people. Each microtube was the size of the sharpened end of a pencil and contained a droplet of human blood serum, golden in color and no bigger than a lemon seed. The droplets were mixed with a larger quantity of a sterilizing chemical that kills Ebola. Augustine Goba, the head of the hospital lab, packed the tiny tubes of sterilized blood serum in ice inside a box, then sent the box by DHL Express to Harvard.

Four days later, on June 4th, the box arrived at Sabeti’s lab, where a research scientist named Stephen Gire put on bioprotective gear and carried the box into a tiny biocontainment lab to open it. The samples were supposed to be safe, but Gire was taking no chances. Gire is tall and quiet, and there is an air of precision about him. He is a talented chef, and in 2008 he was offered a chance to compete for a spot on the television show “Top Chef,” but he turned it down and, instead, went to the Democratic Republic of the Congo to set up a lab and study monkeypox, a virus related to smallpox. On Gire’s left forearm is a tattoo showing a particle of monkeypox, a stylish image of the virus’s inner structure that Gire designed himself, and which looks like a nest of crescent moons. Now, in the lab at Harvard with the unopened box of blood samples from Africa, he realized that he had forgotten to bring along a knife. He fished out his car keys, slit open the box, and removed the microtubes. The ice had melted, but the tubes were still cold, and they were visibly safe: the color in the tubes confirmed that the blood serum had been sterilized. Each tube contained around a billion particles of Ebola virus.

Gire’s first job was to extract from the blood serum the virus’s genetic material. Gire tested all the samples for the presence of Ebola virus. Of the forty-nine people whose blood samples were in the tubes, fourteen had been infected with Ebola. He could tell just by looking: in those samples, the virus had damaged the blood, and the serum had a murky look, clouded with dead red blood cells. He worked late, spinning all the tubes in a centrifuge and adding chemicals. When he was finished, he had fourteen small, clear droplets of water solution, each in its own tube. In each droplet were vast numbers of broken strands of RNA—shattered fragments of genetic code of the Ebola that had once drifted in the blood of the fourteen people from around Kenema. There were many different genomes in the tubes, for the virus had likely mutated as it multiplied.

The next morning, Gire took a car to the M.I.T. campus, carrying a small box containing the tubes of droplets with the Ebola RNA. There, in a lab at the Broad Institute, he and a colleague named Sarah Winnicki, working alongside two other research teams, prepared the RNA to be decoded. The work took four days, and Gire and Winnicki hardly slept. By the end, they had combined all fourteen samples into a single, crystal-clear droplet of water solution. The drop contained about six trillion snippets of DNA. Each was a mirror image of a piece of RNA from the blood samples. Most of the snippets were human genetic code, but among them were about two hundred billion snippets of code from Ebola. There were also many billions of fragments of code from bacteria and other viruses—from anything that happened to be living in the blood. This droplet was referred to as a library.

Each piece of DNA in the droplet had been tagged with a unique bar code—a short combination of eight letters of DNA code—identifying that particular fragment as having come from one of the fourteen patients. “You could consider each bar-coded fragment of DNA as a kind of book,” Gire said. “The book is bound in covers and has an I.S.B.N. number on it. It’s a short book, so a reader can easily digest it. You can find the book by its I.S.B.N. number, and that’s why the droplet is called a library. The books in the DNA library are bound so that the library can be put in a machine”—a genetic sequencer—“and the machine reads all the books.” The droplet contained many more books of DNA letters than there are books in the Library of Congress. The books were all sitting in one immense, jumbled pile, and what was between their covers was unknown.

On Friday, June 13th, Gire carried a single microtube containing the liquid-droplet library to a logging station in the Genomics Platform of the Broad Institute. The Platform houses a suite of rooms crowded with DNA-sequencing machines. Each machine is a white rectangular box about the size of a chest freezer and costs a million dollars; there are more than fifty of them in the Platform, lined up in rows. Half a dozen technicians tend them around the clock, as they read letters of DNA gathered from biological samples. Recently, the machines have read the genomes of the rabbit, the coelacanth, the malaria parasite, the mosquito that carries malaria, candida fungus, Epstein-Barr virus, and a number of human genes involved in cancer, autism, and schizophrenia.


Using a pipette, a technician sucked up about a tenth of Gire’s Ebola droplet—an amount like a fleck of moisture on a wet day—and placed it on a glass slide known as a flow cell. The fleck of liquid contained the full library of code from the blood of the fourteen Ebola patients. The bit of water spread into channels on the flow cell, which sat in the mouth of an Illumina HiSeq 2500 machine, one of the fastest DNA sequencers in the world.

For the next twenty-four hours, the sequencer worked automatically, pulsing liquids across the flow cell, while lasers shone on it. On the surface of the flow cell, hundreds of millions of fragments of DNA had gathered into hundreds of millions of microscopic colored spots. The colors of the individual spots were changing as the process went on, and a camera took pictures of the changing field of spots and stored the data. Twenty-four hours later, the machine had finished reading Gire’s library of bar-coded fragments of DNA. The data were sent to the Broad Institute’s computer arrays, which assembled all the fragments into finished genetic code—it organized the vast pile of books in the library and placed the letters of all the books in their proper order on shelves. On Sunday, June 15th, Gire and Sabeti got word that the computers had finished their job. The result was twelve full genomes of Ebola virus—the Ebolas that had lived in twelve of the fourteen people. (The computers had not been able to assemble the Ebola genomes from two of the people.) Sabeti and her team started the work of analyzing the code, to see how Ebola was changing.

In early July, Stephen Gire flew to Sierra Leone with another member of Sabeti’s team, and they went to the Kenema hospital, bringing with them lab equipment for use in the Ebola outbreak. Gire was grieved by what he saw. Ebola patients were flowing in from the countryside, dying and terrified. They had filled up the Lassa ward, which had become an Ebola ward, and a second ward—a large white structure with plastic walls and a plastic roof—had been erected. It was full of Ebola patients. The new ward had a plastic viewing window in it, so that people could see and talk to their loved ones inside the ward. Family members of Ebola patients were milling around the window. As Gire recalled, there were shouts of surprise and joy when a patient came to the window and family members saw that the patient was alive and could walk, and cries of sorrow when news came that someone had died. Some in the crowd were silent, baffled by the white building and the moonsuits worn by the health workers. In that part of the world, not everybody believed in the infectious theory of disease, the idea that illnesses can spread through microbes. Why wouldn’t the doctors let people see or touch their loved ones at a funeral? Many people distrusted the government, and spiritual explanations for the disease circulated.

Humarr Khan was working in the Ebola wards. When he came out, and had stripped off his P.P.E., Gire thought that he seemed exhausted and tense. Khan met regularly with international aid workers, and he made countless calls on his cell phone to representatives from the World Health Organization and officials from the Sierra Leone Ministry of Health, pleading for more help, more resources. He called family members—he had nine brothers and sisters, some of whom lived in the United States, and his parents were still alive, in Lungi, a town not far from Freetown, the capital. He spoke with Pardis Sabeti; he planned to join her group at Harvard in a few months. He was fascinated by genomics and he wanted to know how the sequencing of Ebola was going. He couldn’t stand the bureaucracy of the outbreak, Sabeti told me, and he would return to the Ebola wards as if they were a refuge from trouble. He seemed more at ease wearing P.P.E. and caring for patients.

Khan had been running the Lassa program for almost a decade. In 2004, his predecessor, Aniru Conteh, accidentally pricked himself with a needle contaminated with blood from a pregnant woman who had Lassa. Conteh died twelve days later, of Lassa fever, tended by his own nurses. For months, the government couldn’t find any doctor willing to run the Lassa program. Khan, who had just finished his internship at the Sierra Leone College of Medicine, agreed to take the job.

Khan arrived driving a battered old car. He was thirty, a modest, handsome man who smiled and joked playfully with people. Khan took up his work and gave patients exceptional attention. One day, a U.S. graduate student named Joseph Fair fell desperately ill with bloody diarrhea. Khan paid a visit to Fair at his room in a nearby Catholic mission, and that was when Fair discovered that Khan had a beautiful bedside manner. After prescribing antibiotics, Khan jovially said to him, “You’ll be fine.” But, leaving the room, Khan forgot to close the door. Moments later, Fair heard him blurt out to somebody, “This guy is dying! I can’t have an expat die on me!” Fair got better, and he and Khan soon became friends. A few years later, they were having a beer in a bar in New Orleans when Fair told Khan that the first time they met he had heard Khan say he was dying. “Well, you were dying,” Khan answered. Fair said, “You didn’t tell me.” Khan burst out laughing. “I would say you were dying? You were my patient. Can you imagine?”


Khan worked long hours in the Ebola wards, trying to reassure patients. Then one of the nurses got sick with Ebola and died. She hadn’t even been working in the Ebola ward. The virus particles were invisible, and there were astronomical numbers of them in the wards; they were all over the floor and all over the patients.

There are two distinct ways a virus can travel in the air. In what’s known as droplet infection, the virus can travel inside droplets of fluid released into the air when, for example, a person coughs. The droplets travel only a few feet and soon fall to the ground. The other way a virus can go into the air is through what is called airborne transmission. In this mode, the virus is carried aloft in tiny droplets that dry out, leaving dust motes, which can float long distances, can remain infective for hours or days, and can be inhaled into the lungs. Particles of measles virus can do this, and have been observed to travel half the length of an enclosed football stadium. Ebola may well be able to infect people through droplets, but there’s no evidence that it infects people by drying out or getting into the lungs on dust particles. In 1989, a virus known today as Reston, which is a filovirus related to Ebola, erupted in a building full of monkeys in Reston, Virginia, and travelled from cage to cage. One possible way, never proved, is that the virus particles hitched rides in mist driven into the air by high-pressure spray hoses used to clean the cages, and then circulated in the building’s air system. A rule of thumb among Ebola experts is that, if you are not wearing biohazard gear, you should stand at least six feet away from an Ebola patient, as a precaution against flying droplets.


Some patients with Ebola become disoriented, struggle and thrash, and fall out of bed. They can get a bloody nose, which makes them sneeze. They can have projectile vomiting, and they can cough while they are vomiting. Some become incontinent, and all the fluids that come out of their bodies are increasingly saturated with Ebola particles. The new plastic-walled Ebola ward at Kenema had a type of bed in it, common in African hospitals, known as a cholera bed. A patient with cholera suffers from uncontrollable watery diarrhea. A cholera bed has a plastic-covered mattress with a hole in the center. A bucket is placed on the floor under the hole and the patient defecates through it into the bucket. In the Ebola ward, the nurses were emptying the buckets and trying to keep things clean, but it was impossible. Then some of the nurses began skipping work. In the tropical heat, the smell of the Ebola wards became intense.

Around July 12th, Joseph Fair, who had been working with the World Health Organization in Freetown, two hundred miles away, travelled to Kenema, a drive of several hours, and went looking for his friend Dr. Khan. Fair found him but couldn’t speak with him, he told me later. Khan was inside the plastic Ebola ward, and the place was a mess. There were thirty or more Ebola patients in the ward, lying on cholera beds, and the floor was splashed with everything that can come out of the human body. Khan was making rounds, with one nurse, both of them wearing P.P.E.

Daniel Bausch, an American Ebola doctor who had been helping at Kenema, and his colleagues recently wrote that Khan had remarked, “I am afraid for my life, I must say. . . . Health workers are prone to the disease, because we are the first port of call for somebody who is sickened.” They also quoted Khan’s sister Isatta as saying, “I told him not to go in there, but he said, ‘If I refuse to treat them, who would treat me?’ ” Perhaps Khan was thinking of his predecessor Dr. Conteh, dying in his own ward.


Alex Moigboi, a popular man who had worked in the hospital for many years, came down with Ebola. Then the head nurse, Mbalu Fonnie, a widow who sometimes used the last name Sankoh, and who had worked at the hospital since it opened, in the nineteen-nineties, began feeling weak and shivery and ran a fever. At first, she downplayed her symptoms and continued working seven days a week, fourteen to sixteen hours a day. She hoped that she had malaria, and gave herself an I.V. drip of malaria medicine, but she didn’t get better. She tested positive for Ebola. That same day, two other Kenema nurses, Fatima Kamara and Veronica Tucker, also tested positive for Ebola. Moigboi died on July 19th, and Fonnie died two days later.

Many of the staff at Kenema became terrified and began staying home from work. Khan ended up working in the Ebola wards with little or no support. Sierra Leone’s medical-care system, sparse and rudimentary to begin with, was collapsing under the strain of Ebola, and the international aid groups that worked in Ebola outbreaks were stretched thin. Doctors Without Borders was coping with Ebola patients in a treatment center at Kailahun, in eastern Sierra Leone, fifty miles from Kenema. In Liberia, doctors and nurses with Samaritan’s Purse, a Christian organization, were overrun with patients at a hospital called ELWA, near Monrovia. Khan talked regularly with Pardis Sabeti. “We are all alone here,” he said to her one day. She told him that she and her colleagues in the War Room were rushing people and equipment to him, and they were calling around the world, looking for more doctors and more help. “People and help were coming,” Sabeti told me later, “but it was nowhere near enough.”

Sabeti warned Khan about stress and overwork. “The most important thing is your safety. Please take care of yourself.”

He told her, “I have to do everything I can to help these people,” and then he would put on his gear and go back into the Ebola wards. Khan was a general in a battle where many of his troops were dead or fleeing.

On July 19th, at a large staff meeting, people noticed that Khan didn’t look well. The next day, he didn’t come to work. He had isolated himself at home. The following morning, he requested a test. One of the lab technicians went to his house to draw blood: it was positive for Ebola. Khan didn’t want to be treated at Kenema, because he didn’t want his staff to see him develop symptoms, and he felt that his presence would further demoralize them. The next day, he climbed into an ambulance, which carried him along rutted dirt roads to the Ebola ward in Kailahun.
 

Cascadians

Leska Emerald Adams
At the treatment center in Kailahun, there was a freezer powered by a generator, and inside the freezer were three small plastic bottles containing a frozen water solution. In it were antibodies, Y-shaped molecules that are produced naturally by the immune systems of mammals as a defense against invading microbes. The liquid was ZMapp, an experimental drug for the treatment of Ebola, and the three bottles amounted to what might be a course of ZMapp for one human being. The drug was untested in humans. During the previous decade, a group of scientists, working with very little money and virtually no encouragement from the community of Ebola experts, had developed the drug. The effort involved dozens of people, but the principal researchers were Larry Zeitlin, the president of Mapp Biopharmaceutical, a biotech company in San Diego; Gene Garrard Olinger, a contractor with the National Institute of Allergy and Infectious Diseases division of the National Institutes of Health; and Xiangguo Qiu and Gary Kobinger, researchers at the Public Health Agency of Canada’s research facility in Winnipeg. ZMapp was a cocktail of three antibodies that seemed especially potent in killing Ebola. Mapp Biopharmaceutical and the manufacturer, Kentucky BioProcessing, had developed a method of growing it in tobacco plants.

In April of 2014, three months before Khan fell ill, Kobinger and his group in Canada tested ZMapp for the first time in monkeys infected with Ebola. They gave the monkeys a thousand times the lethal dose of Ebola. To the researchers’ surprise, the drug saved the monkeys. ZMapp could work even when the animal seemed close to death. Kobinger and his team found that they had to give the animal three doses of ZMapp spaced a few days apart. Kobinger compared this to three punches from a prizefighter: the first two punches knocked Ebola down and the third ended the fight. In late June, while Ebola was starting to blow up across West Africa, Kobinger travelled from his lab in Winnipeg to Kailahun with lab equipment for the doctors there, along with the three plastic bottles of ZMapp, and left the bottles in the Kailahun freezer. He wanted to see how ZMapp held up in the tropical climate, where the heat and an uncertain electricity supply can ruin a drug’s effectiveness. He had no idea that it would be used.


The government of Sierra Leone regarded Humarr Khan’s plight as a national crisis. As soon as Khan became ill, a government official sent out an e-mail to Ebola experts around the world, asking for information about any drug or vaccine that might help him. In a series of international conference calls, officials from the World Health Organization, the U.S. Centers for Disease Control and Prevention, the government of Sierra Leone, the Public Health Agency of Canada, scientists from the United States Army, and health workers from Doctors Without Borders, which was running the Kailahun Ebola center, debated how to treat Khan. Many of the people on the phone knew him, and this was a matter of life and death.

The debate quickly centered on ZMapp, which seemed to show more promise than other drugs. Why should Khan, and not other patients, get any experimental drug? What if he died? ZMapp had been tested in some monkeys a few months earlier, but what was the significance of that? It was made from mouse-human antibodies that had been grown in tobacco plants. If such substances enter the bloodstream, a person might have a severe allergic reaction. If something went wrong with the drug, there was no intensive-care unit in Kailahun. The population of Sierra Leone would be furious if the West was seen to have killed Khan, an African scientist and a national hero, with an experimental drug. But if he wasn’t given the ZMapp, and he died, people might say that the West had withheld a miracle drug from him. “I was making sure my tone of voice stayed neutral,” Kobinger recalled. The debate and the calls went on for three days.


Meanwhile, at the ELWA hospital, two hundred miles to the south, a fifty-nine-year-old American health worker named Nancy Writebol got a fever. She tested positive for malaria and went to bed in her house, on the grounds of the hospital, where she lived with her husband, David Writebol. Soon afterward, Kent Brantly, a thirty-three-year-old American doctor with Samaritan’s Purse at ELWA, called the medical director of disaster response for Samaritan’s Purse, Lance Plyler. “Don’t freak out, Lance, but I think I’ve got a fever,” Brantly said. He put himself into isolation in his house on the hospital grounds, and Samaritan’s Purse sent a sample of his blood to the National Reference Laboratory of Liberia. Plyler told me that he didn’t want anybody to know that one of his doctors might have Ebola, so he labelled the tube with a fictitious name, Tamba Snell.

The National Reference Lab of Liberia is a former chimpanzee-research center and sits at the end of a dirt road in the forest near Monrovia’s international airport. It is well staffed and well equipped. An American virologist named Lisa Hensley had been working there with Liberian and American colleagues, testing dozens of clinical samples of liquids from the bodies of people suspected of having Ebola. Hensley works with the National Institute of Allergy and Infectious Diseases, and has been doing research on Ebola in U.S. government biocontainment labs for more than fifteen years. She and her colleagues, wearing pressurized P.P.E. suits, were using devices called PCR machines to find out if Ebola was present in the samples, in order to help doctors in Liberia identify people who were infected. Technicians at the lab tested the blood of Tamba Snell. It came up negative for Ebola, and Hensley e-mailed the result to a doctor at Samaritan’s Purse. The real Tamba Snell, Kent Brantly, got sicker.

On July 25th, the international groups finally came to a decision about Humarr Khan. ZMapp was too risky and would not be given to him. Khan was informed; it is not clear that he was brought in to the decision. That same day, his brother Sahid, in Philadelphia, began frantically calling Kailahun in an effort to speak to him. Sahid had been calling Humarr’s cell phone for days but had got no answer. Sahid got somebody at Kailahun on the phone and demanded to speak with his brother. “It is not possible to speak to Humarr,” he was told. Sahid blew up. “Then I want a picture of him to prove he is still alive!” he shouted. Soon afterward, somebody texted him a photo of his brother. In the image, Humarr is sitting on a plastic chair, slumped, and his eyes are heavy-lidded. He appears to be exhausted and turned inward, though a slight smile flickers on his face. Sahid believes that the smile was for the sake of their mother, an attempt to tell her not to worry.


At the lab in Monrovia, Lisa Hensley and her group received another sample from Tamba Snell. Shortly afterward, Hensley got an e-mail from an official with the C.D.C. saying that the blood came from “one of our own.” Hensley understood this to mean that an outbreak responder might have Ebola. Then another sample came in, with the name Nancy Johnson. Hensley knew that the names were fictitious. The lab wasn’t staffed that day—it was July 26th, Liberian Independence Day, a national holiday. Nevertheless, Hensley and a colleague, Randal Schoepp, put on P.P.E. and went into the lab. They began with the blood of Tamba Snell. The machines worked fast: he had Ebola. Hensley e-mailed Lance Plyler: “I am very sorry to inform you that Tamba Snell is positive.” Later that day, she texted him: Nancy Johnson had Ebola, too.

At ELWA, Plyler went to the house where Kent Brantly was isolated, in bed, and was distressed to see how ill he looked. “I hate to tell you that you have Ebola,” he said. After a moment, Brantly said, “I really did not want you to say that.” Plyler immediately decided that he would do all he could. He knew that there were experimental drugs for Ebola. Doctors from Samaritan’s Purse sent an e-mail to a C.D.C. official who was stationed in Monrovia: they wanted to talk to a researcher with direct experience in the development of the drugs. They wanted that person to put Plyler in touch with anyone who might have access to these possible therapies.

That person turned out to be Lisa Hensley, the scientist in Monrovia who had just tested Brantly’s and Writebol’s blood. She sent information to Samaritan’s Purse and offered to visit ELWA as soon as possible. She couldn’t get out until the following evening, and the roads weren’t entirely safe after dark. The hospitals in Monrovia were full of Ebola patients, and the medical system was crumbling. In the countryside, medical-outreach teams had been attacked by mobs of frightened people. Hensley called the U.S. Embassy in Monrovia and arranged for an Embassy car and driver to take her to ELWA. She arrived at ten o’clock that night; Plyler was waiting in his car. They drove through the compound until they came to a small house, painted white, where a lighted window was opened just a crack. Kent Brantly was sitting in bed behind the window, with his laptop. He was researching his case, and he told Hensley that he knew about antibodies to Ebola.

Hensley had done laboratory research on experimental drugs and vaccines for Ebola. Speaking to Brantly through the window, she summarized nineteen possible options. Almost none of them had been tested in humans. In January, Tekmira Pharmaceuticals had begun testing a drug, TKM-Ebola, in humans, evaluating it for safety. It had shown decent results in monkeys, but the drug had been put on partial hold while the company collected more information for the Food and Drug Administration. There was a drug called T705, which had been tested in Japan, in humans, against influenza virus, and it might have some effect on Ebola. Hensley told Brantly that she had participated in a study of a drug called rNAPc2, an anticoagulant made by a company called Nuvelo; the drug saved one of three monkeys it was tested on. Brantly focussed his attention on ZMapp. It had saved monkeys even when they were deep into the illness, as he was now. But, still, he didn’t know. When Hensley finished, Brantly’s voice came out through the window: “What would you do, Lisa?”

She couldn’t tell him what to do. “These are all very personal decisions,” she said. Then she told him that she had been exposed to Ebola, sixteen years earlier. At the age of twenty-six, working in a spacesuit with liquids full of Ebola particles, she had cut her finger with scissors, which had gone through two layers of gloves. The only experimental treatment at that time was a horse serum made by the Russians; this could kill her, and she had decided not to use it unless she was certain that she had contracted Ebola. On the night of the accident, after a meeting to analyze what had happened, she was sent home to her apartment. She called her parents and told them that she might come down with Ebola and that they would have to collect her belongings and take her cat home with them.


Brantly listened, and said that he probably would choose ZMapp for himself, based on the data, even though it had never been tested on humans. Hensley offered to donate blood if he had hemorrhages. Plyler then drove her across the compound to Nancy Writebol’s house. Writebol was asleep close to a window. Her husband and a nurse both put on P.P.E. and woke her, and Hensley spoke with her from outside the house. Meanwhile, Hensley noticed that the window was wide open, and Writebol began coughing. A ceiling fan blew gusts of air out the window and across Hensley and the others. Hensley could smell the air from the bedroom. She took a step back but didn’t say anything. Later that night, in her hotel room, Hensley sent a text to Lance Plyler. “You guys make me a little bit nervous,” she typed, and she advised them to wear breathing masks outside the windows of the two patients.

On July 28th, Gary Kobinger, of the Public Health Agency of Canada, received an e-mail from Lance Plyler asking for ZMapp to be sent to ELWA as quickly as possible. Kobinger told him that the nearest course of the drug was sitting in a freezer in Kailahun, in Sierra Leone, across an international border. By now, Humarr Khan was close to death. Hensley had not taken part in the debate over whether to give ZMapp to Khan, but she knew about the decision.

The drug would have to be flown from Kailahun, but there was no airfield there; the nearest was in a town called Foya. A few days earlier, a team from the Sierra Leone Ministry of Health had been attacked in Foya, and a ministry vehicle was burned; residents were fleeing the area. The U.S. Embassy in Monrovia asked Lisa Hensley to pick up the drug and arranged a helicopter for her.


The chopper was an old gray Russian Mi-8, flown by two Ukrainian pilots. A colonel in the U.S. Marine Corps accompanied her—to provide peace of mind, he told her. A heavy rain was falling, and Hensley and the colonel sat in the helicopter for hours on the tarmac. During those hours, in Kailahun, Humarr Khan died. Finally, during a break in the weather, the helicopter took off and headed north. Hensley, wearing ear protectors, sat buckled on a bench facing the colonel. She could see almost nothing out the window except moisture whipping across the glass, but now and then she caught a glimpse of a ridge covered in jungle slipping by below. She grew anxious, especially when the colonel remarked, “We’ve been flying in periods of zero visibility.”

In this outbreak, everybody was flying in near-zero visibility. Below the helicopter, lost in the rain, Ebola was maneuvering in secret. No drugs or vaccines were known to work against it in people; Hensley was on her way to get one sample of one experimental compound. Later, she told me, “If you are walking by a lake and somebody is drowning, you can’t not try to save them. People are drowning in Ebola.”

She was a single mother, with a nine-year-old son she’d left back in Maryland, in the care of her parents. “If we don’t help, what message are we sending to our children?” she said to me one day. “Our children are going to inherit these problems, and people are dying. Part of the responsibility of a parent is to teach our children how to be responsible. We have to set the example for our staff, our families, and the patients in Africa.”

Hensley dozed off, and when the chopper touched down in Foya she discovered that a plane from Samaritan’s Purse had already left with the drug. The helicopter flew back to Liberia.

At the ELWA hospital, Lance Plyler, with the drug now in his hands, agonized about whether he should give it to Writebol or to Brantly. He found some words in the Book of Esther: “Who knows whether you have come to the kingdom for such a time as this?” Writebol was extremely ill by now, but he found Brantly in surprisingly good condition, working on his laptop in bed. Brantly was more concerned about Writebol. “Give the drug to Nancy—I’ll be getting out of here in a couple of days,” he told Plyler. An evacuation jet had been ordered, and he was evidently thinking of that. Still, Plyler put off the decision. Another night passed.


On the morning of July 31st, Plyler went to see Nancy Writebol, and decided to give her the drug. She seemed close to the end stage of Ebola-virus disease; she had developed a sea of red spots and papules across her torso—signs of hemorrhages under the skin—and she was beginning to bleed internally. She could crash at any time: lose blood pressure, go into shock, and die. One of the bottles was taken out of the freezer, and Plyler had Writebol hold it in her armpit to defrost it.

Around seven o’clock that evening, Plyler went to Brantly’s house to see how he was doing. When he looked in the window, he was stunned. Brantly had abruptly gone into the end-stage decline. His eyes were sunken, his face was a gray mask, and he was breathing in irregular gasps. “A clinician knows the look,” Plyler told me later. “He was dying.” Brantly, a clinician himself, realized that he was on the verge of a breathing arrest. With no ventilators at the hospital, he wouldn’t make it through the night.

Plyler made a decision. “Kent, I’m going to give you the antibodies.” He would split the three doses, giving one bottle to Brantly, the second bottle to Writebol, and the third bottle to whichever of them was not evacuated.

A nurse got the bottle from under Writebol’s arm. Writebol said that she was glad for Brantly to have it. While Plyler watched, a doctor named Linda Mabula suited up and went into Brantly’s house, where she prepared an I.V. drip. The plan was to drip the first dose into him very slowly, so that the antibodies wouldn’t send him into shock. Plyler stayed by the window and prayed with Brantly. After less than an hour, Brantly began to shake violently, a condition called rigors. It occurs in people who are near death from an overwhelming bacterial infection. Plyler had a different feeling about these rigors. “That’s just the antibodies kicking the virus’s butt,” he told Brantly through the window.

Three hours later, Lisa Hensley got a text from Lance Plyler: “Kent is about halfway into the first dose. Honestly he looks distinctly better already. Is that possible?” Hensley texted back to say that monkeys on the brink of death had shown improvement within hours. Two days later, having received one dose of ZMapp out of the required three doses, and a blood transfusion from a fourteen-year-old boy who had recovered from Ebola, Kent Brantly walked onto the evacuation plane. At Emory University Hospital, in Atlanta, he received two more doses of ZMapp, which had been sent from the tobacco facility in Kentucky, and was discharged from the hospital after two weeks, free of the virus.

Nancy Writebol had a different experience. She did not improve noticeably when she got the first dose of ZMapp, and she developed intense itching in her hands, which seemed to be an allergic reaction to the drug. She continued to have internal hemorrhages afterward, and was given a blood transfusion to make up what she was losing. Nevertheless, she survived. She was evacuated to Emory University Hospital two days later and received more ZMapp and another blood transfusion there.

As of this writing, the world’s supply of ZMapp is temporarily exhausted. It was given to five more patients with Ebola, including a Spanish priest, who died shortly after getting the first dose. More of the drug is growing in tobacco plants in a building in Kentucky. The plants have enough of the drug in them to make twenty to eighty treatment courses of ZMapp in the next two months, as long as there are no glitches in the process. The U.S. government and Mapp Biopharmaceutical are scrambling to get more plants growing, to increase production, but the scale-up will not be easy. The drug remains untested, and nobody can say whether it will ever become a weapon in the Ebola wars.

At two o’clock in the afternoon on July 31st, the funeral of Humarr Khan began in Kenema. It was attended by five hundred people, including townspeople, scientists, health workers, and Sierra Leone government ministers. Many wept uncontrollably. The gravediggers encountered rocks, and it took them hours to dig deep. At ten o’clock that night, in the moments when Kent Brantly was shaking with rigors as ZMapp flowed into his body, the gravediggers finished burying the body of Khan at the Kenema hospital.

As Khan lay dying, Pardis Sabeti composed a song for him and the other Kenema workers, called “One Truth.” It had the line “I’m in this fight with you always.” She had hoped that some day she could sing it to him, but by then he was already in isolation. When she received the news of his death, she was “absolutely devastated,” she said. “I can’t even begin to describe the feeling of loss for the world.” Equally devastating were the deaths of the staff members who had stayed to work in the wards at Kenema.


Through the summer, Sabeti and her group continued to read the Ebola genomes. They published them in real time, on the Web site of the National Center for Biotechnology Information, so that scientists anywhere could see the results immediately. Then, in late August, they published a paper in Science detailing their results. They had sequenced the RNA code of the Ebolas that lived in the blood of seventy-eight people in and around Kenema during three weeks in May and June, just as the virus was first starting chains of infection in Sierra Leone. The team had run vast amounts of code through the sequencers, and had come up with around two hundred thousand individual snapshots of the virus, in the blood of the seventy-eight people, and had watched it mutate over time. They could see who had given the virus to whom. They could see exactly how it had mutated each time it grew in one person and jumped to the next. The snapshots, taken together, amounted to a short video of Ebola. You could imagine the virus as a school of fish, with each particle of Ebola a fish. The fish were swimming, and as they swam and multiplied they changed, until the school had many kinds of fish in it and was growing exponentially in size, with some kinds of fish better at swimming than others.

Gire and Sabeti’s group also found that the virus had started in one person. It could have been the little boy in Meliandou, but there is no way to tell for sure right now. After that, the swarm mutated steadily, its code shifting as it palpated the human population. As the virus jumped from person to person, about half the time it had a mutation in it, which caused one of the proteins in the virus to be slightly different. By the time the virus reached Sierra Leone, travelling in the bodies of the women who had attended the funeral of the faith healer, it had become two genetically distinct swarms. Both lineages of the virus moved from the funeral into Sierra Leone. Already, some of the mutations were making Ebola less visible to the tests for it.

“It shows that you can analyze Ebola in real time,” Sabeti said. “This virus is not a single entity. Now we have an entry into what the virus is doing, and now we can recognize what we are battling with at every point in time.”

The Science paper included five authors who died of Ebola, including Humarr Khan, the head nurse Mbalu Fonnie, and the nurse Alex Moigboi. “There are lifetimes in that paper,” Sabeti said. A thousand more vials of human blood with Ebola in them are sitting in freezers in Kenema waiting for bureaucratic clearance so that they can be flown to Harvard and sequenced in the machines, and scientists can see what the swarm has been doing more recently.

The question often asked is whether Ebola could evolve to spread through the air in dried particles, entering the body along a pathway into the lungs. Eric Lander, the head of the Broad Institute, thinks that this is the wrong question to ask. Lander is tall, with a square face and a mustache, and he speaks rapidly and with conviction. “That’s like asking the question ‘Can zebras become airborne,’ ” he said. In order to become fully airborne, Ebola virus particles would need to be able to survive in a dehydrated state on tiny dust motes that remain suspended in the air and then be able to penetrate cells in the lining of the lungs. Lander thinks that Ebola is very unlikely to develop these abilities. “That would be like saying that a virus that has evolved to have a certain life style, spreading through direct contact, can evolve all of a sudden to have a totally different life style, spreading in dried form through the air. A better question would be ‘Can zebras learn to run faster?’ ”

There are many ways by which Ebola could become more contagious even without becoming airborne, Lander said. For example, it could become less virulent in humans, causing a milder disease and killing maybe twenty per cent of its victims instead of fifty per cent. This could leave more of them sick rather than dead, and perhaps sick for longer. That might be good for Ebola, since the host would live longer and could start even more chains of infection.


In the lab in Liberia, Lisa Hensley and her colleagues had noticed something eerie in some of the blood samples they were testing. In those samples, Ebola particles were growing to a concentration much greater than had been seen in samples of human blood from previous outbreaks. Some blood samples seemed to be supercharged with Ebola. This, too, would benefit the virus, by enhancing its odds of reaching the next victim.

“Is it getting better at replicating as it goes from person to person?” Hensley said. She isn’t at all sure; maybe in previous outbreaks some people had had these profusions of particles in their blood. “We have to go back to the lab to answer this question.”

Sun Tzu, the great Chinese strategist, wrote that one of the rules of war is to know the enemy. Sabeti and her team now had a way to watch Ebola as it changed; they had the enemy in sight. This meant that the tests for Ebola could be updated quickly as the virus changed, and that the scientists might also be able to see it mutating in some dangerous direction.

Meanwhile, scientists have been developing weapons against the virus and are starting to test them. The scientists who came up with ZMapp, along with Kentucky BioProcessing, were racing to increase the production of ZMapp and to get it tested as a new drug in patients infected with Ebola. The hope is to get the drug through clinical trials and gain the support of a regulatory agency. Even at increased production speed, the supply of ZMapp would still be nowhere near enough to treat the population, but it might be enough—provided it was effective—to kill Ebola in some infected people. If there were a drug that could save somebody from Ebola, this might help encourage health professionals to work in Ebola wards, knowing that there would be a treatment for them if they got infected.

In addition to many drug candidates, there are vaccines in development. In early September, the National Institutes of Health began testing a vaccine, made by a division of GlaxoSmithKline and based on an adenovirus, on twenty volunteers. Another vaccine, called VSV-EBOV, developed by the Public Health Agency of Canada and licensed to NewLink Genetics, started human trials last week. It seems possible that some time next year a vaccine may be available for use on people who have already been exposed to Ebola, though it will still not be cleared for general use. If a vaccine is safe and shows effectiveness against Ebola, and if it can be transported in the tropical climate without breaking down, then vaccinations against Ebola could someday begin.

If a vaccine works, then the vaccinators might conceivably set up what’s known as ring vaccinations around Ebola hot spots. In this technique, medical workers simply vaccinate everybody in a ring, miles deep, around a focus of a virus. It works like a fire break; it keeps the fire from spreading. Ring vaccination was the key to wiping out the smallpox virus, which was declared eradicated in 1979, but whether the ring technique—provided there was a good vaccine—would work against Ebola nobody can say. In any case, epidemiologists would not give up trying to trace cases in order to break the chains of infection.

In the U.S. and Europe, hospitals have made fatal mistakes in protocol as they engage with Ebola for the first time—errors that no well-trained health worker in Africa would likely make. But they will learn. By now, the warriors against Ebola understand that they face a long struggle against a formidable enemy. Many of their weapons will fail, but some will begin to work. The human species carries certain advantages in this fight and has things going for it that Ebola does not. These include self-awareness, the ability to work in teams, and the willingness to sacrifice, traits that have served us well during our expansion into our environment. If Ebola can change, we can change, too, and maybe faster than Ebola.
 

Cascadians

Leska Emerald Adams
http://dailycaller.com/2014/10/27/obama-health-official-ebola-can-spread-through-bus-sweat/
10/27/2014 8:04/a, by Patrick Howley

Obama Health Official: Ebola Can Spread Through Bus Sweat

Department of Health and Human Services Assistant Secretary Dr. Nicole Lurie said in sworn testimony that Ebola can spread through perspiration left on a bus seat.

Republican Kentucky Rep. Thomas Massie grilled Lurie at Friday’s House Oversight and Government Reform Committee hearing on the federal government’s response to the Ebola outbreak, where Lurie admitted that Ebola can be spread through bus perspiration.

Massie asked Lurie whether or not Ebola can survive on inert surfaces for at least 15 minutes. Lurie replied that “it can survive.” Massie then asked whether Ebola could be transmitted on a bus. Lurie said that someone would have to be exposed to infected bodily fluids. Massie asked if that includes perspiration.

“It does include perspiration,” Lurie replied.

Other panelists at the hearing sitting beside Lurie also confirmed the possibility of Ebola transmission through bus perspiration.

“That could include perspiration,” said International Medical Corps. official Rabih Torbay, adding that bus transmission “could be possible.”

“It can be transmitted through sweat,” said Marine Corps Major General James Lariviere.


The White House successfully pressured New York Gov. Andrew Cuomo and New Jersey Gov. Chris Christie to end their states’ quarantine policy for health-care workers who have treated Ebola patients — a policy put in place after the first Ebola diagnosis in New York City Thursday night.
 

NC Susan

Deceased
http://vaccineresistancemovement.org/?p=13982

Latest Ebola News from Joel Lord of the Vaccine Resistance Movement

Now ask yourself why Ebola was self contained until the Latest round of Yellow Fever Vaccines were introduced

>> Snipping ...........

About 20%–50% of patients with hepato-renal failure die, usually 7–10 days after the onset of disease. Patients surviving YF may experience prolonged weakness and fatigue, but healing of the liver and kidney injuries is usually complete.‘ WHO Position Paper – June 2011

‘Yellow fever vaccine-associated viscerotropic disease (YEL-AVD) is a rare and serious adverse event associated with administration of the yellow fever vaccine. YEL-AVD is an illness similar to wild-type yellow fever, in which the vaccine virus proliferates in multiple organs, causing multiple organ dysfunction syndrome or multiorgan failure and death in at least 60% of cases. Initial symptoms of YEL-AVD are nonspecific and can include the following: fever, malaise, headache, myalgia, vomiting, and diarrhea. More severe cases can progress to hepatic (liver), renal (kidney), or respiratory insufficiency or failure; hypotension; thrombocytopenia; and coagulopathy (inability to regulate clotting causing massive hemorrhaging).‘ CDC – History, Epidemiology, and Vaccination Information

‘Yellow fever vaccine-associated viscerotropic disease (YEL-AVD) is clinically indistinguishable from wild-type yellow fever illness. Most YEL-AVD reports describe patients with fever and multiple organ system failure, and often death (17 deaths/29 cases worldwide).‘ The American Journal of Tropical Medicine and Hygiene

‘The present YF vaccines are based on a wild-type YF virus isolated in Ghana in 1927. Numerous mutations in the viral structural and non-structural genes have led to the attenuated variant 17D. This attenuated vaccine virus exists in 2 sub-strains (17D-204 and 17DD) which share 99.9% sequence homology. Nucleotide sequencing has shown differences between these vaccine strains and the wild-type Asibi strain, affecting 20 amino acids. Virus with the resulting phenotype is non-transmissible by mosquitoes. Both sub-strains are used in vaccines prepared by culturing the virus in embryonated eggs. The vaccine contains sorbitol and/or gelatine as a stabilizer and is lyophilized. No preservative is added.‘ WHO Position Paper on Yellow Fever Vaccine

Based on preliminary reports from field doctors in Africa, Doctors in Belgium examining blood samples from the 1976 Zaire outbreak were initially expecting Yellow Fever, NOT Ebola. ‘The researchers in Zaire who had sent it couldn’t identify the virus, simply labeling it, “Yellow Fever?”‘

In 1994, another Ebola outbreak (in northeastern Gabon, bordering the Congo) was mistaken for Yellow Fever, this time based on actual clinical findings – ‘Yellow fever (YF) virus was first diagnosed in serum by use of polymerase chain reaction followed by blotting,‘

This subsequently led to the institution of a Yellow Fever vaccination campaign. It was only later, that doctors determined: ‘some aspects of this epidemic were atypical of YF infection, so a retrospective check for other etiologic agents was undertaken. Ebola (EBO) virus was found to be present concomitantly (joined together) with YF virus in the epidemic.‘

Ebola virus antigen

This current version of Ebola virus had 40 years to spread to outlying regions. It never did.

How did the Zaire strain of Ebola get to West Africa from about 3,500 km away from where it was first identified in 1976?

How does a virus that has remained dormant, relatively stable, isolated, suddenly manifest in areas well outside its traditional territory?

With a little help from the Centres for Disease Control (proliferation), that’s how.

Even the CDC Director admits they are baffled by the unprecedented concentration of cases outside the typical range,

‘For more than four decades, Ebola virus had only been diagnosed in Central or Eastern Africa. Then late this past March, the first cases of Ebola began appearing in a surprising part of the continent. The outbreak in Guinea was the first sign that the virus had made the jump across the continent. Ebola then spread quickly to Sierra Leone and Liberia, and then to Nigeria.‘ Tom Frieden, MD, Director, US Centers for Disease Control and Prevention, Atlanta, Georgia

‘No virus that causes disease in humans has ever been known to mutate to change its mode of transmission.‘ Mainstream Media misinformation

In truth, no virus is fully modified or attenuated or killed during the vaccine manufacturing process. All vaccines, by their very nature, play off each other, generate a “synergistic” chain-reaction triggering further (more insidious) infections & disorders. In many cases the very signature disease/disorder they claim to protect you against is PRECISELY that which they inadvertently spread; albeit a more virulent “transforming” strain of the primary pathogen.

Essentially, ALL Viral vaccines become “weaponized” through the various stages of Vaccine development; further metastasizing in the vaccine host: ‘Mutations that can occur when the vaccine virus replicates in the body may result in more a virulent strain.‘
 
Top